
13. H. Hasimoto, "On periodic fundamental solutions of the Stokes equations and their ap- 
plication to viscous flow past a cubic array of spheres," J. Fluid Mech., 5, No. 2 
(1959). 

14. V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall (1962). 
15. K. K. Sirkar, "Transport in packed beds at intermediate Reynolds numbers," Ind. Eng. 

Chem., Fundam., 14, No. i (1975). 
16. M. ~. A~rov and O. M. Todes, Hydraulic and Thermal Principles of Apparatus with a Sta- 

tionary and Boiling Granular Bed [in Russian], Khimiya, Leningrad (1968). 
17. P. H. Sih and J. Newman, "Mass transfer to the rear of a sphere in Stokes flow," Int. 

J. Heat Mass Transfer, i0, No. 12 (1967). 
18. J. Newman, "Mass transfer to the rear of a cylinder at high Schmidt numbers," Ind. Eng. 

Chem., Fundam., 8, No. 3 (1969). 
19. A. D. Polyanin, "Concentration distributionin a diffusion wake of particles streamlined 

by a Stokes flow," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. i (1977). 
20. G. K. Batchelor, Introduction to Fluid Dynamics, Cambridge Univ. Press (1967). 
21. S. Taneda, "Studies on wake vortices (III). Experimental investigation of the wake be- 

hind a sphere at low Reynolds numbers," Rep. Res. Inst. Appl. Mech., Kyushu Univ., 4, 
99 (1956). 

22. I. Proudman and J. R. A. Pearson, "Expansions at small Reynolds numbers for the flow 
past a sphere and a circular cylinder," J. Fluid Mech., 2, Pt. 3 (1957). 

23. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press (1975). 

STATIONARY TRANSFER IN FIBROUS COMPOSITE MATERIALS 

Yu. A. Buevich and V. G. Markov UDC 536.2.022 

The effective heat-conduction coefficients are calculated for fibrous materials 
of different structure. 

The general methods of investigating transfer processes in heterogeneous systems de- 
veloped in [i, 2] in application to dispersed media with spherical particles can be used suc- 
cessfully also in describing these processes in materials of a different structure. Sta- 
tionary transfer in fibrous materials, which is used extensively in engineering and being of 
considerable applied interest, is examined below in the example of the heat-conduction pro- 

cess. 

In the general case, materials consisting of a continuous medium and fibers with differ- 
ent physical properties distributed therein are not isotropic, where the nature and degree 
of the anisotropy are determined by the fiber packing features. Taking into account that 
the mean heat flux q and the mean temperature gradient �9 are real vectors, we see that the 
quantity A must be considered a real tensor of the second rank in the linear relationship 

q = _ART, (1) 

replacing the Fourier law in the case under consideration. The effective heat-conduction 
coefficients can comprise a nonglobal tensor in other dispersed media also, e.g., in media 
with spheroidal particles having a preferred direction of orientation of their axes of sym- 
metry [3]. Equation (i) can be obtained strictly by taking the average of the local Fourier 
relationships, which are valid within and outside the fibers in either small physical volume 
(in this case the linear scale of the quantities q and T should considerably exceed the in- 
ternal structural scale of the material) as was done in [i], or in the ensemble of admissible 
fiber configurations analogous in meaning to the ensemble of configurations of systems of 
rigid spheres studied in [2]. 

Let us investigate a material with extended parallel fibers first. The cross section 
of each fiber is a circle of radius a; the centers of such circles are arranged randomly 

Institute for Problems in Mechanics, Academy of Sciences of the USSR, Moscow. 
fated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 5, pp. 828-834, May, 1979. 
article submitted November 21, 1977. 

Trans- 
Original 

550 0022-0841/79/3605-0550507.50 �9 1979 Plenum Publishing Corporation 



in a plane normal to the fiber axes, i.e., can occupy different points of this plane with 
equal probability. The axes of a Cartesian coordinate system, one of which is directed along 
the fiber axis while the other two are arbitrarily arranged in the plane mentioned, are the 
principal axes of the heat-conduction tensor A in which it is a diagonal. One of the eigen- 
values of A hence equals the coefficient of "longitudinal" heat conduction 

~("=~,~:~.0+p~,, e=l--p,  (2) 
and t h e  two o t h e r s  a g r e e  w i t h  t he  c o e f f i c i e n t  o f  " t r a n s v e r s e "  h e a t  c o n d u c t i o n ,  i . e . ,  

where X• can be calculated exactly as the coefficient of effective heat conduction of the iso- 
tropic dispersed medium with spherical particles considered in [4]. The sole difference from 
the analysis in [4], where configurations of systems of spheres in a volume were examined, 
is that in this case it is necessary to consider configurations of circles which are the fiber 
cross sections in a plane perpendicular to their axes. 

Omitting the details of the discussion, which is perfectly analogous to that in [2, 4], 
we arrive at the formula 

~a2S  ~' (4) ~, =/ '0~, ~E = E =- (x - -  1) ~* (x a_ r ] r) ndx,  x . . . . . . . . .  , 

where the integration is over the contour of an isolated ("test") circle with center at the 
point r, of the mean temperature ~* on this contour. This is determined from the solution of 
the following plane problem on the temperature distribution in the neighborhood of the test 
fiber, obtained analogously to the spatial problem of the temperature distribution near a test 
spherical particle in [4]: 

v I B ( $ ) V , ' I  = 0 ,  x > a; V'* = 0 ,  a > x / > 0 ;  [ ~ x/a, (5) 

T' --~ 0,  x - ~  oo; ~* .< oo., x = 0, 

T' + Ex : r*, )~nvT' + ) , -nE  = ),• x = a.  

Here Ex is the mean temperature in the material, not perturbed by the test fiber (without 
limiting the generality, it can be considered that the vector E is in the plane of the prob- 
lem), and T' is the corresponding perturbation of the temperature field. 

The test fiber can therefore be formally considered as submerged in a fictitious homoge- 
neous mediumwhose heat conduction XoB(~) depends on the distance to the fiber surface. The 
analogy to the situation in [2, 4] is completely evident here. The expression for B(~) has 
the same form as the expression for B in (4) if the volume fiber concentration p in the lat- 
ter is replaced by the local concentration p(~) = po($), which is the probability of .an 
event that the point at a distance x = ~.a from the axis of the test fiber will be within the 
fiber. For materials with the random fiber packing assumed, o($) is easily calculated from 
a consideration of the simple geometric problem: if there are two circles of radius a and 2a 
separated by the spacing x between their centers, then o(~) equals the ratio between the area 
of the smaller circle lying outside the larger circle to the total area of the small circle. 
We have 

o(~) = 1 - -  1 arccos ~arccos  - -  [ ~ 2 _  1)(9_~)]~12 ( 6 )  

f o r  1 < ~ < 3 and g (~)  = 1 f o r  ~ > 3. The d i f f e r e n c e  o f  o (5 )  f rom one n e a r  t h e  t e s t  f i b e r  
s u r f a c e  r e f l e c t s  t h e  p r o p e r t y  o f  n o n o v e r l a p a b i l i t y  o f  t h e  f i b e r s :  t h e  axes  o f  two a d j a c e n t  
f i b e r s  c a n n o t  be c l o s e r  t h a n  t h e  s p a c i n g  2a .  

I t  i s  e a s y  t o  see  t h a t  t he  s o l u t i o n  o f  (5)  c an  be  r e p r e s e n t e d  a s  

~' - -  l ~ )  Ex, ~* == v e x ,  ( 7 )  

so t h a t  a f t e r  e v a l u a t i n g  the  i n t e g r a l  i n  (4) we o b t a i n  f o r  B and B(~) 

= 1 + ( •  1 )gv ,  B ~ )  = 1 + ( x - -  l ) ~ ) v .  ( 8 )  

The problem permitting v and f(~) to be found is obtained easily after substituting (7) 
into (5), and has the form 
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d~ ~dzt -{--3 --~. 9dV d In B ~)d~ \{~d[-I-t) = O ' d g  . (9) 

f = v - - 1 ,  d t / R = ~ ( •  ~=  1; f-,-O, ~ o o  

Let us note that the solution of the problem of a test spherical particle formulated in [4] 
can be also represented in the form (7), where a problem is obtained for ~ and f(~) which 
also has the form (9) but with another dependence o(~) [5]. 

For quite small p the effect of nonoverlappability of the fibers can be neglected, i.e., 
o(~) = i and B(~) = ~ can simply be taken, which corresponds to a representation of the test 
fiber submerged in a homogeneous fictitious medium whose properties agree with the mean ef- 
fective properties of the material as a whole. In this case, we have the following approxi- 
mate formula from the solution (5) or (9): 

1 
[~ = ~ {(I --29)(I - - •  -I-- [(I - -  2p)2(I - -  • + 4• (10) 

The approximation 

0, I<~<2 
(JtD= I, ~>2, (l l)  

corrasponding to the representation of a test fiber separated from a homogeneous medium by 
a concentric layer of thickness a in which the heat conduction agrees with that for the pure 
continuous phase of the material (see [2, 4]), is possible for concentrated material. In 
this case we obtain after simple calculations 

[B, = [3x (I - -  p) + 5 -I- 3p]-~{ - [• (3 - -  7p) + I ~ 7p] - -  {Ix (3 - -  7p) + 

-t-1 + 7p] z --{- [3:r (1 - -  p) Jr 5 n u 3pI[• (9 + 7p) --', 7 (1 7- ~a)]}~/2} �9 (12) 

Approximate formulas (i0) and (12) are compared in Fig. 1 with the result from a numeri- 
cal solution of the problem (9), and with the analog of the known Maxwell formula with the 
form 

-- i ~-- l (13) 

~+I x+] 

For values of x, small and commensurate to one, the approximate formula (12) yields a good 
result; for very large Z there is a substantial discrepancy between (12) and the exact re- 
sult obtained from (8) with ~ determined from the numerical solution of (9). These deductions 
are valid even for the dispersed medium investigated in [4, 5]. However, in contrast to the 
situation in [4, 5], the domain for validity of (i0) turns out to be quite narrow; this for- 
mula is considerably less successful than even (13). Hence, the physically completely con- 
ceivable deduction follows that the effect of nonoverlappability for the fibers is relative- 
ly more substantial than for the particles. 

Dependences of the relative transverse heat conductivity ~ on the concentration P are 
shown in Fig. 2 for different • obtained as a result of numerical integration of problem (9). 

Now, let us examine fibrous materials of more complex structure. The components of the 
heat-conduction tensor for such materials can be calculated, in principle, by means of the 
known quantities %1[ and %_t, defined above, and by means of certain data about the structure 

.p 
2 ! 

f 
O,5 

Fig. i. Comparison between formulas for 
the relative transverse heat conduction 
of a material with parallel fibers for 
x > 1 (a) and • 1 (b); i) result ob- 
tained by numerical integration of the 
problem (9), 2) (I0) ; 3) (12) ; 4) (13) ; 
for a) x - =; for b) • O. 
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Fig. 2. Dependences of B on P for • 1 
(a) and • i (b); the digits at the 
curves are values of • 

of the material. Let us first examine a material with elongated fibers whose axes are paral- 
lel to a certain plane (x, y), where the directions of the axes are described by a certain 
distribution function F(~), normalized to one, where ~ is an angle measured in the usual man- 
ner from the x axis. Such material can be constructed by the random superposition of plane 
arrays with parallel fibers on each other, where the frequency of appearance of arrays with 
fibers of a given direction is controlled by the function F(~). Firstly, it is clear that 
for such material 

~(3) = ~33 = ~i' ~i3 = ~3i = 0 (i~3). (14) 

The remaining components of the heat-conduction tensor are easily evaluated by using the 
rule for transforming tensors with the change in the coordinate system. Thus, the system of 
coordinate axes being used here can be considered as obtained from the principal system of 
axes for arrays of parallel fibers oriented in the direction ~ because of a unitary trans- 
formation, rotation through an angle ~, around the z axis. It is hence easy to find the com- 
ponents of the tensor A for this array, and to calculate such components even for the mate- 
rial under investigation as a whole by using the distribution function F(~) after taking the 
average. Consequently, the following formulas are obtained* 

0 

= (15) 
k~z = ~ (~tj sin' ~ + k• cos 2 ~) F (~) d~, 

0 

Ltz = Z u = ( k i  - -  Z 11) S cos ~ sin ~ e  (~) d~. 

In particular, for an equally probable distribution of directions of the fiber axes in the 
plane (x, y), we have F(~) = ~_i and 

kl 1=k(i~=kz~=~(z~=k,= 1 
~- (%II q- %1), ~,z =km = 0. (16) 

This latter result can also be obtained more simply if it is taken into account that for ~ 
equally probable values of ~we always have %11 = %22, ~i= = %2~ = 0, i.e., the trace of the 
tensor A equals 2%(~) + %(~) = 2%~ + %m. On the other hand, the trace of the tensor is in- 
variant relative to unitary transformations of coordinates, i.e., should equal %U~-2k• as 
before. Hence, (16) again follows at once. 

It is easy to see that results (15) and (16) are true for materials with unelongated 
fibers (whose axes are curves of lines parallel to the (x, y) plane). Indeed, for this it 

*Let us emphasize that the specific expression s and numerical results for the transverse 
heat-conduction coefficient of a material with elongated parallel fibers have been obtained 
above under the assumption of random packing of the fibers. The packingis somewhat ordered 
in plane arrays with parallel fibers, i.e., is distinct from random. Hence (15) and (16) 
must be considered approximate, true to the accuracy of possible fluctuations due to the 
packing details, for materials comprised on the arrays mentioned. Topological singularities 
of the materials with interwoven arbitrarily cambered fibers all differ analogously from 
those for materials with elongated fibers. Hence, (16) and (17) are also true in the general 
case but only approximately when applied to material of that kind; their errors, which can be 
considered moderate from general considerations, can finally be determined for different 
values of the parameters only by comparison with experiment results. 
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o c~ p 0 0,~ p 

is only necessary to consider that the function F(~) describes the distribution of the local 
directions of the fiber axes (e.g., within the limits of a small physical volume). 

Now, let the fibers be oriented arbitrarily in space, where the distribution of the di- 
rections of their axes is described at any point by a certain distribution function in which 
the usual polar and azimuthal angles or even the Euler angles figure as arguments. The com- 
ponents of the tensor A for fibers of fixed orientation are again obtained by using the tensor 
transfromation rule, and the components of this tensor (the effective heat conduction coeffi- 
cients) for the material as a whole by using additional averaging utilizing the distribution 
function mentioned. The appropriate formal representations for the quantities %ij (i, j = 
I, 2, 3) are easily found completely analogously to the representations (15); they are not 
written down here because of their awkwardness. 

In the simplest case of a spatially isotropic material with randomly twisted and inter- 
woven fibers, the tensor A is global. The heat-conduction coefficient of Such a material is 
obtained easily from the condition of invariance of the trace of the tensor relative to rigid 
rotations of the coordinate axes, as mentioned earlier. We have 

~i,  = ~ 1 3 (~lt + 2 ~ ) ,  i = 1, 2, 3. (17) 

D e p e n d e n c e s o f  t h e  r e l a t i v e  h e a t - c o n d u c t i o n  c o e f f i c i e n t s  % ' / to  and %/%o from (16) and 
(17) on p and • a r e  i l l u s t r a t e d  by the  cu rves  i n  F i g .  3. 

In  c o n c l u s i o n ,  l e t  us  n o t e  t h a t  b e c a u s e  o f  t h e  a n a l o g y  in  t h e  f o r m u l a t i o n  o f  t h e  mathe-  
m a t i c a l  p r o b l e m s ,  t h e  r e s u l t s  o b t a i n e d  above can  be used  i n  c a l c u l a t i o n s  o f  n o t  o n l y  t h e  
h e a t - c o n d u c t i o n  c o e f f i c i e n t s ,  but  a l s o  o f  t he  e f f e c t i v e  d i f f u s i o n  c o e f f i c i e n t s  and the  e i e c -  
t r o p h y s t c a l  p a r a m e t e r s  , ( c o e f f i c i e n t s  o f  c o n d u c t i o n ,  d i e l e c t r i c  and ma g n e t i c  c o n s t a n t s )  o f  
various fibrous materials. 

NOTATION 

a, fiber radius; E, mean temperature gradient in a direction normal to the fibers; F(~), 
distribution function of the directed fibers; f(~), function introduced in (7); q, mean heat 
flux; x, distance from the axis of the test fiber; B, relative transverse heat conduction of a 
material with parallel fibers; B(~), function introduced in (5) and (8); E = 1 -- 0; x= %~/io; 
%, %', effective heat-conduction coefficients defined by (17) and (16), respectively; %,,and 
i• longitudinal and transverse heat conduction of a material with parallel fibers; %o and 
%,, heat conduction of a continuous medium and of fiber material, respectively; ~, eigenvalue 
of problem (9), which figures in (7) and (8); ~ = x/a; 9, volume fiber concentration in the 
material; o(~), function introduced in (8) and defined in (6) for materials with random fiber 
arrangement; T, mean temperature; and ~, azimuth angle in the (x, y) plane. 
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